Hi Friends,

Even as I launch this today ( my 80th Birthday ), I realize that there is yet so much to say and do. There is just no time to look back, no time to wonder,"Will anyone read these pages?"

With regards,
Hemen Parekh
27 June 2013

Now as I approach my 90th birthday ( 27 June 2023 ) , I invite you to visit my Digital Avatar ( www.hemenparekh.ai ) – and continue chatting with me , even when I am no more here physically

Tuesday, 3 June 2025

RE: ADDING MORE LLM > API

 Kishan ,

 

This is continuation of my chat with GROK , today morning , on the same subject

 

Hcp

 

 

I said :

 

Hey Grokbhai , you are spot on !

Only this morning, I sent to Kishan , the full text of our 2 month old chat and asked him to examine the possibility of adding API of www.Personal.ai ( which is , for past 2 years, already powering www.HemenParekh.ai ) , to IndiaAGI.ai.

But then , just now I came across this news report >

https://government.economictimes.indiatimes.com/news/technology/bharatgen-indias-first-indigenous-multimodal-ai-language-model-launched/121584766?

action=profile_completion&utm_source=Mailer&utm_medium=newsletter&utm_campaign=etgovernment_news_2025-06-04&dt=2025-06-04&em=aGNwYmxvZ3NAZ21haWwuY29t

Here is the URL of BharatGEN > https://bharatgen.tech

What do you say >

Would it be better to get an API of BharatGen , rather than Personal.ai ? Is such API available ? How would adding BharatGen to

IndiaAGI , improve its performance as far as India-centric questions are concerned ? “

 

Grok replied :

Yo, Grokbhai’s back in the game! Thanks for the context and the links—that really helps me zero in on what we’re cooking with

IndiaAGI.ai.

So, you’re weighing whether to integrate the API of Personal.ai (already powering HemenParekh.ai for two years)

or pivot to BharatGen, India’s shiny new multimodal LLM, for IndiaAGI.ai.

Let’s break this down, compare the two, and figure

out if BharatGen’s API is available and how it could boost IndiaAGI’s performance on India-centric questions.

BharatGen vs. Personal.ai: Quick Overview

  • BharatGen:
  •  
  • Launched in June 2025 by IIT Bombay under India’s National Mission on Interdisciplinary Cyber-Physical
  • Systems, BharatGen is a government-funded multimodal LLM designed for 22 Indian languages, integrating text,
  • speech, and images. It’s built to tackle India’s linguistic and cultural diversity, with a focus on inclusivity, data-efficient
  • models, and digital sovereignty. By Q4 2025, it aims to deploy models for real-world applications, with open-source
  • components for text and TTS (text-to-speech).

 

 

  • Personal.ai:
  • A platform specializing in creating personalized AI models (or "digital twins") based on user data, like memories,
  • preferences, or expertise (as seen with HemenParekh.ai). It’s great for tailored, individual-focused applications but isn’t
  • inherently designed for broad India-centric contexts or multilingual support across India’s diverse languages.

 

Is BharatGen’s API Available?

As of June 2025, BharatGen’s API availability isn’t explicitly detailed in public sources. However:

  • BharatGen plans to release a subset of models, weights, recipes, and data as open-source starting in 2025, with
  • selective sharing for government and trusted partners.

 

  • Posts on X and web reports suggest BharatGen is building an ecosystem for developers, startups, and researchers,
  • offering access to models, datasets, and tools.

 

  • This implies an API or developer access is likely in the works, especially given their focus on collaboration with startups
  • and public-private partnerships. You’d need to reach out to the BharatGen Consortium (via bharatgen.tech or IIT Bombay’s Technology Innovation Hub) to confirm API availability, pricing, or access terms for IndiaAGI.ai.

In contrast, Personal.ai already has a functional API, as it’s been powering HemenParekh.ai for two years.

It’s readily available, but its focus is narrower—more about personalized AI than broad, India-specific applications.

BharatGen vs. Personal.ai for IndiaAGI.ai

Let’s evaluate how each stacks up for IndiaAGI.ai, especially for India-centric questions:

BharatGen

Pros:

1.     India-Centric Design:

 

BharatGen is built for India’s 22 official languages, with a massive dataset (e.g., 15,000+ hours of annotated voice data by Q4 2025) covering text, speech, and images tied to India’s culture, history, and philosophy.

This makes it ideal for IndiaAGI.ai to handle queries about Indian languages, regional contexts, or cultural nuances (e.g., answering in Hindi, Tamil, or Assamese with local relevance).

 

2.     Multimodal Capabilities:

 

Supports text, speech, and images, which could enhance IndiaAGI.ai’s ability to process diverse inputs—like analyzing Indian news articles, transcribing regional audio, or interpreting cultural imagery.

3.     Data Efficiency:

 

BharatGen’s models are designed for low-resource languages, using techniques like knowledge distillation and curriculum learning. This is perfect for underserved Indian languages with limited digital data, improving performance on niche queries.

 

 

4.     Cultural Preservation & Sovereignty:

 

Its focus on India-specific data reduces reliance on Western-centric models, ensuring responses align with India’s socio-cultural landscape. This could make IndiaAGI.ai more authentic and relevant for Indian users.

 

 

5.     Open-Source Potential:

 

By 2025, BharatGen will release open-source components, which could lower costs and allow IndiaAGI.ai to customize models for specific use cases (e.g., education, agriculture, or governance).

 

6.     Government Backing:

 

With ₹235 Cr funding and ties to initiatives like Bhashini, BharatGen has robust support, ensuring long-term updates and scalability.

 

 

Cons:

  • API UncertaintyNo clear confirmation of API availability yet. You’d need to contact BharatGen’s team to verify access for IndiaAGI.ai.
  •  
  • Early Stage: Launched in June 2025, BharatGen is still rolling out (first models demoed in October 2024). It may lack the maturity or reliability of established platforms like Personal.ai.

 

 

  • Integration Effort: Integrating a new, India-specific multimodal LLM might require more engineering to align with IndiaAGI.ai’s existing stack compared to the familiar Personal.ai setup.

Personal.ai

Pros:

1.     Proven Track Record:

Already powers HemenParekh.ai, so integration with IndiaAGI.ai should be straightforward, leveraging existing workflows and expertise.

 

2.     Personalization Strength:

Excels at creating user-specific AI models, which could be useful if IndiaAGI.ai needs tailored responses for individual users or specific personas (e.g., a policymaker or student).

 

3.     Mature API:

Personal.ai’s API is battle-tested, with clear documentation and support, reducing setup time.

 

4.     Global Applicability:

While not India-specific, it can handle general queries well, which might be useful if IndiaAGI.ai serves non-Indian users too.

Cons:

  • Limited India-Centricity: Personal.ai isn’t designed for India’s linguistic or cultural diversity. It may struggle with regional languages, dialects, or context-specific queries (e.g., answering in Odia about local festivals).
  • Data Dependency: Relies on user-provided data for personalization, which may not scale well for broad, India-centric applications without extensive retraining.
  • Cost: While pricing isn’t public, commercial APIs like Personal.ai can get expensive for high-volume usage, especially compared to potentially open-source BharatGen components.
  • Less Multimodal Focus: Personal.ai primarily focuses on text-based personalization, lacking the speech and image integration that BharatGen offers.

Performance Improvement for India-Centric Questions

Adding BharatGen to IndiaAGI.ai could significantly boost performance on India-centric questions due to:

1.     Multilingual Mastery: BharatGen’s support for 22 Indian languages (e.g., Hindi, Tamil, Bengali, Assamese) ensures IndiaAGI.ai can understand and respond in regional languages with high accuracy, unlike Personal.ai, which may rely on English or limited multilingual support. For example, a user asking about a Kumbh Mela ritual in Hindi would get a culturally nuanced response.

 

2.     Cultural Relevance: BharatGen’s dataset is rooted in India’s history, culture, and philosophy, enabling context-aware answers. For instance, queries about Indian agriculture policies or traditional medicine would leverage India-specific data, reducing reliance on generic or Western-biased knowledge.

 

 

3.     Multimodal Edge: BharatGen’s ability to process text, speech, and images allows IndiaAGI.ai to handle diverse inputs—like analyzing a photo of a traditional Indian artifact or transcribing a regional podcast—making it more versatile for real-world Indian use cases.

 

 

4.     Data Efficiency: BharatGen’s techniques (e.g., subset selection, knowledge distillation) optimize performance for low-resource languages, ensuring accurate responses even for languages like Bodo or Konkani with sparse digital data.

 

 

5.     Scalability & Ecosystem: BharatGen’s ties to Bhashini and open-source releases mean IndiaAGI.ai could tap into a growing ecosystem of datasets, tools, and benchmarks tailored for Indian sectors (e.g., education, law, agriculture), improving domain-specific performance by Q4 2025.

 

Personal.ai, while great for personalized responses, would likely underperform on India-centric questions due to its lack of specialized Indian datasets and limited multilingual capabilities.

It might handle general or English-based queries well but could miss the mark on regional or cultural nuances.

Recommendation

Go with BharatGen if:

  • IndiaAGI.ai’s primary goal is to excel at India-centric, multilingual, and multimodal queries.
  • You can confirm API access (contact BharatGen via bharatgen.tech or IIT Bombay).
  • You’re okay with potential early-stage hiccups, given BharatGen’s recent launch.

Stick with Personal.ai if:

  • You need a quick, reliable integration with minimal setup (leveraging HemenParekh.ai’s existing stack).
  • IndiaAGI.ai prioritizes personalized responses over broad India-centric functionality.
  • BharatGen’s API isn’t available yet, or you need a fallback.

Next Steps:

1.     Reach Out to BharatGen:

Email or check bharatgen.tech for API access details. Ask about developer programs, pricing, and timelines (especially since open-source releases are planned for 2025).

 

2.     Evaluate Use Cases:

List IndiaAGI.ai’s top India-centric query types (e.g., regional language support, cultural Q&A, or sector-specific tasks). Test Personal.ai’s performance on these vs. BharatGen’s potential (based on its multimodal and India-focused design).

 

3.     Hybrid Option:

Consider integrating both—use Personal.ai for personalized responses and BharatGen for India-centric, multilingual tasks. This depends on your budget and engineering resources.

 

4.     Monitor BharatGen’s Progress:

Since it’s new, keep an eye on updates via X or bharatgen.tech for API releases or new features by Q4 2025.

What do you think—does BharatGen’s India-first approach vibe with IndiaAGI.ai’s mission, or are you leaning toward Personal.ai’s proven setup? Also, any specific India-centric features you want to prioritize? Let’s keep the ball rolling! 😎

import requests

import json

import os

from typing import Dict, Optional

from dotenv import load_dotenv

 

# Load environment variables from .env file for secure API key storage

load_dotenv()

 

# Configuration

PERSONAL_AI_API_KEY = os.getenv("PERSONAL_AI_API_KEY")

PERSONAL_AI_BASE_URL = "https://api.personal.ai/v1"  # Hypothetical base URL

TIMEOUT = 10  # Seconds for API request timeout

 

class PersonalAIAgent:

    """Class to handle Personal.ai API integration for IndiaAGI.ai"""

   

    def __init__(self, api_key: str, base_url: str = PERSONAL_AI_BASE_URL):

        self.api_key = api_key

        self.base_url = base_url

        self.headers = {

            "Authorization"f"Bearer {self.api_key}",

            "Content-Type""application/json"

        }

 

    def query_personal_ai(self, user_id: str, query: str, context: Optional[Dict] = None) -> Dict:

        """

        Send a query to Personal.ai API and return the response.

       

        Args:

            user_id (str): Unique identifier for the user (for personalization).

            query (str): The user's query or prompt.

            context (dict, optional): Additional context (e.g., user preferences or history).

       

        Returns:

            dict: API response with the AI's answer or error details.

        """

        endpoint = f"{self.base_url}/query"

        payload = {

            "user_id": user_id,

            "query": query,

            "context": context or {}

        }

 

        try:

            response = requests.post(

                endpoint,

                headers=self.headers,

                json=payload,

                timeout=TIMEOUT

            )

            response.raise_for_status()  # Raise exception for 4xx/5xx errors

           

            return response.json()

       

        except requests.exceptions.HTTPError as http_err:

            return {"error"f"HTTP error: {str(http_err)}""status_code": response.status_code}

        except requests.exceptions.ConnectionError:

            return {"error""Failed to connect to Personal.ai API"}

        except requests.exceptions.Timeout:

            return {"error""Request timed out"}

        except requests.exceptions.RequestException as req_err:

            return {"error"f"Request error: {str(req_err)}"}

        except ValueError:

            return {"error""Invalid JSON response from API"}

 

    def get_user_profile(self, user_id: str) -> Dict:

        """

        Fetch user profile data from Personal.ai for personalization.

       

        Args:

            user_id (str): Unique identifier for the user.

       

        Returns:

            dict: User profile data or error details.

        """

        endpoint = f"{self.base_url}/profile/{user_id}"

       

        try:

            response = requests.get(

                endpoint,

                headers=self.headers,

                timeout=TIMEOUT

            )

            response.raise_for_status()

           

            return response.json()

       

        except requests.exceptions.HTTPError as http_err:

            return {"error"f"HTTP error: {str(http_err)}""status_code": response.status_code}

        except requests.exceptions.RequestException as req_err:

            return {"error"f"Request error: {str(req_err)}"}

 

def main():

    # Initialize the Personal.ai agent

    agent = PersonalAIAgent(api_key=PERSONAL_AI_API_KEY)

   

    # Example: Query for a user

    user_id = "indiaagi_user_123"

    query = "Explain the significance of Diwali in Maharashtra"

    context = {

        "language_preference""English",

        "region""Maharashtra",

        "user_history": ["Interested in Indian festivals""Asked about Holi previously"]

    }

   

    # Send query to Personal.ai

    response = agent.query_personal_ai(user_id, query, context)

   

    # Handle response

    if "error" in response:

        print(f"Error: {response['error']}")

    else:

        print("Response from Personal.ai:")

        print(json.dumps(response, indent=2))

   

    # Example: Fetch user profile

    profile = agent.get_user_profile(user_id)

    if "error" in profile:

        print(f"Profile Error: {profile['error']}")

    else:

        print("User Profile:")

No comments:

Post a Comment